Dual modes of interaction between XRCC4 and polynucleotide kinase/phosphatase: implications for nonhomologous end joining.

نویسندگان

  • Rajam S Mani
  • Yaping Yu
  • Shujuan Fang
  • Meiling Lu
  • Mesfin Fanta
  • Angela E Zolner
  • Nasser Tahbaz
  • Dale A Ramsden
  • David W Litchfield
  • Susan P Lees-Miller
  • Michael Weinfeld
چکیده

XRCC4 plays a crucial role in the nonhomologous end joining (NHEJ) pathway of DNA double-strand break repair acting as a scaffold protein that recruits other NHEJ proteins to double-strand breaks. Phosphorylation of XRCC4 by protein kinase CK2 promotes a high affinity interaction with the forkhead-associated domain of the end-processing enzyme polynucleotide kinase/phosphatase (PNKP). Here we reveal that unphosphorylated XRCC4 also interacts with PNKP through a lower affinity interaction site within the catalytic domain and that this interaction stimulates the turnover of PNKP. Unexpectedly, CK2-phosphorylated XRCC4 inhibited PNKP activity. Moreover, the XRCC4·DNA ligase IV complex also stimulated PNKP enzyme turnover, and this effect was independent of the phosphorylation of XRCC4 at threonine 233. Our results reveal that CK2-mediated phosphorylation of XRCC4 can have different effects on PNKP activity, with implications for the roles of XRCC4 and PNKP in NHEJ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV.

Nonhomologous end joining (NHEJ) is the major DNA double-strand break (DSB) repair pathway in mammalian cells. A critical step in this process is DNA ligation, involving the Xrcc4-DNA ligase IV complex. DNA end processing is often a prerequisite for ligation, but the coordination of these events is poorly understood. We show that polynucleotide kinase (PNK), with its ability to process ionizing...

متن کامل

An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex*

DNA double-strand break (DSB) repair by non-homologous end joining (NHEJ) in human cells is initiated by Ku heterodimer binding to a DSB, followed by recruitment of core NHEJ factors including DNA-dependent protein kinase catalytic subunit (DNA-PKcs), XRCC4-like factor (XLF), and XRCC4 (X4)-DNA ligase IV (L4). Ku also interacts with accessory factors such as aprataxin and polynucleotide kinase/...

متن کامل

Coincident In Vitro Analysis of DNA-PK-Dependent and -Independent Nonhomologous End Joining

In mammalian cells, DNA double-strand breaks (DSBs) are primarily repaired by nonhomologous end joining (NHEJ). The current model suggests that the Ku 70/80 heterodimer binds to DSB ends and recruits DNA-PK(cs) to form the active DNA-dependent protein kinase, DNA-PK. Subsequently, XRCC4, DNA ligase IV, XLF and most likely, other unidentified components participate in the final DSB ligation step...

متن کامل

Double-Strand Breaks by Nonhomologous End Joining but Human Polynucleotide Kinase Participates in Repair of DNA

Human polynucleotide kinase (hPNK) is a bifunctional enzyme possessing a 5¶-DNA kinase activity and a 3¶-phosphatase activity. Studies based on cell extracts and purified proteins have indicated that hPNK can act on single-strand breaks and double-strand breaks (DSB) to restore the termini to the chemical form required for further action by DNA repair polymerases and ligases (i.e., 5¶-phosphate...

متن کامل

Human polynucleotide kinase participates in repair of DNA double-strand breaks by nonhomologous end joining but not homologous recombination.

Human polynucleotide kinase (hPNK) is a bifunctional enzyme possessing a 5'-DNA kinase activity and a 3'-phosphatase activity. Studies based on cell extracts and purified proteins have indicated that hPNK can act on single-strand breaks and double-strand breaks (DSB) to restore the termini to the chemical form required for further action by DNA repair polymerases and ligases (i.e., 5'-phosphate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 48  شماره 

صفحات  -

تاریخ انتشار 2010